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LETTER TO THE EDITOR 

A note on quasi-periodic states? 
F Gesztesy and H Mitter 
Institut fur Theoretische Physik, Universitat Graz, A-8010 Graz, Austria 

Received 9 January 198 1 

Abstract. We point out some subtleties in the existence problem of quasi-periodic states for 
quantum Hamiltonians periodic in time. 

The interaction of light with atomic electrons was one of the phenomena which led to 
the development of quantum mechanics. Since electromagnetic waves are periodic in 
time, the description requires the study of time-dependent periodic Hamiltonians 
H ( t  + T )  = H ( t ) ,  T >O. If the intensity of the wave is low enough, one obtains a 
satisfactory description by perturbation theory, starting from a time-independent 
Hamiltonian. Since the advent of lasers with high intensities this approach no longer 
suffices. Multi-photon spectroscopy has developed rapidly into a separate field of 
research. An immense literature is available, both on experimental and theoretical 
developments, and the progress is recorded at special congresses (see for example 
Eberly and Karczewski 1977, Eberly and Lambropoulos 1978, Eberly et a1 1979). 
Despite this activity and the practical importance of the field, so far there have been 
only a few rigorous investigations of quantum mechanics with Hamiltonians periodic in 
time. A concept which seems appropriate for a rigorous treatment is that of quasi- 
periodic states (Zeldovich 1967). This concept underlies many practical applications 
and has attracted much interest (see Salzman 1974a and references therein). If the 
underlying state space is finite dimensional, the existence of quasi-periodic (QP) states is 
generally accepted (Shirley 1965, Young et a1 1969, Salzman 1974a) but for infinite 
dimensions precise statements are missing. In fact, some authors simply postulated 
their existence (Sambe 1973), whereas others (Young et al 1969) developed arguments 
against them. 

In this Letter we discuss these existence problems on the basis of elementary 
functional analytic considerations and presen.t a concise but rigorous treatment of QP 
states and their main properties. 

Throughout this Letter we assume the following conditions to be fulfilled. 
(A l )  H ( t ) ,  t E R  is a family of self-adjoint periodic Hamiltonians in a Hilbert space 

(A2) There exists an evolution operator U(t ,  to), t, to E R ,  with the properties: 
(a) U(t ,  to) is unitary for all t, roE R, 
(b) U @ ,  t )  = 1, t E R ,  
(4 U(t ,  tdU(t1, t2) = U(t7 t*), 
(d) u(t + T ,  t O + T )  = u ( t ,  to), t, to E R ,  

%, H ( t  +T)=H(t ) ,  T > O ,  for all t e R .  

t, t i ,  t 2  E R ,  

t Work supported by Fonds zur Forderung der Wissenschaftlichen Forschung in Osterreich, Projekt No 
3764, 

0305-4470/81/040079+05$01.50 @ 1981 The Institute of Physics L79 



L80 Letter to the Editor 

(e) U(t,  to) is strongly continuous in t and t o ,  
(f) iffo E dom[H(to)] for some to E R ,  then U(t,  to) fo  E dom[H(t)] for all t E R  and 

tER.  d 
dt -U(t, t o ) f o  = - f l ( t )U( t ,  t o ) f o ,  

Sufficient conditions on H ( t )  in order that (A2(a)-(f)) are valid are well known (Simon 
1971, Kat0 1973, Prugovecki and Tip 1974, Yajima 1977, Howland 1979) and need 
not be reproduced here. 

Without loss of generality we put to = 0 and note that (Al)  and (A2) immediately 
imply the Floquet form (Shirley 1965, Salzman 1974a, Barone et a1 1977) of U(t) = 
U(t7 0). 

Proposition 1. Assume (Al )  and (A2(a)-(f)). Then U ( t )  may be written as 

~ ( t )  = P ( t )  tER,  (1) 

where G is self-adjoint, and P ( t )  is unitary and periodic, P(t  + 7 )  =P( t ) ,  t E R .  For a 
proof see Salzman (1974a) and Barone et a1 (1977). 

Note that unitarity of U ( t )  (which is responsible for the self-adjointness of G) implies 
that the spectrum a(G)  of G is real, a ( G )  ER, which is in contrast to the situation in 
Hill’s equation where characteristic exponents are in general complex (Becker et a1 
1979). 

Now we are in a position to discuss QP states associated with H(t ) .  They are usually 
introduced as solutions of 

with the additional property 

@(A, t + 7 )  t ) ,  A E R .  (3) 

Here the parameter A ,  which is unique up to multiples of 2nn/7, n €2, is called 
quasi-energy (Ritus 1967). 

In order to reduce the complexity of the problem, we eliminate the t dependence 
completely and consider the related eigenvalue problem 

G$(A) = A $ ( A ) ,  $(A)  E dom(G). (4) 

If c$ (A ) E dom(G) n dom[H(O)] fulfils (4) then 

@.(A, t )  = U(t)c$(A) 

is easily seen to be a solution of (2) and (3). On the other hand, if 9 ( p ,  t )  E dom[H(t)] 
fulfils (2) and (3), then W(p,  0) fulfils 

u(T)*(~, 0) = e-iTG ~ ( p ,  0)  = e-iTp ~ ( p ,  0) 

and hence W(p, 0) is a solution of (4) with A = p + 2nn/7 for some n E 2. 

states in the following way. 
Given the eigenvalue problem (4) we can thus answer the existence question of QP 



Letter to the Editor L8 1 

Proposition 2. Suppose (Al)  and (A2(a)-(f)) are fulfilled. Then QP states associated 
with H ( t )  exist if and only if G has eigenstates $(A) contained in the domain of H(0).  
The QP states are then given by U(t)$(A).  

Since in general the spectrum a(G) of G consists of a point part, a,(G), and a 
continuous part, a,(G) (with v ( G )  = ap(G) U a,(G)), the QP states can only be expected 
to have their usual properties (cf Zeldovich 1967) if the continuous part a,(G) is void. In 
particular, the QP states can only be complete if the spectrum of G is a pure point 
spectrum, i.e. if a(G) = a,(G). This is illustrated in the following proposition. 

Proposition 3. Assume in addition to (Al )  and (A2(a)-(f)) that G has a pure point 
spectrum a (G)  = ap(G) ={An ( n  = 1,2 ,3 ,  . . .} and that the corresponding orthonormal 
eigenvectors $ ( A n )  of G fulfil $ ( A n )  E dom[H(O)], n = 1, 2, 3, . . . . Then the QP states 
corresponding to H ( t )  are given by "(A,,, t )  = U(t)$(A,) and the following relations 
hold. 

(a) For each fixed t E R  {"(An, t)(n = 1 ,2 ,3 ,  . . .}constitute a complete orthonormal 
system in 2. 

(b) If @(t)  E dom[H(t)] is a solution of (2) then 

d 
-(*(An, t ) ,  @ ( t ) )  = 0 dt 

(c) For all @ E 5Y 

for all n = 1,2 ,3 ,  . . . . 

l(*(Am t + T ) >  @)I = I(*(Afl? t ) ,  @)I 
and 

("(A,, t ) ,  = eifAnpn ( t ) ,  p n  ( t  + T I  - P n  01, n = 1 , 2 , 3  , . . .  . 
(d) If A k 7  = Ai7 + 2nn, n E 2, then any superposition of "(A,, t )  and *(Ak ,  t )  belongs 

to the same quasi-energy. 

Proof. (a) follows from the fact that {*&,)In = 1,2, 3 , .  . .}, as eigenvectors of a 
self-adjoint Hamiltonian with pure point spectrum, span all of X, and from the unitarity 
of U(t ) .  (b) is proved by noting 

(c) is implied by 

(d) is clear since quasi-energies are defined up to multiples of 2nn/r, n E 2. 

Propositions 2 and 3 contain a subtle point which has not been realised before. In 
fact one cannot rule out the (pathological) case that G has eigenstates 4 which are not in 
the domain of H(0).  In such a case U(t)4  is no QP state of H ( t )  and the system of QP 
states is not complete. This shows that, in contrast to the conjecture to be found in 
Salzman (1974a), the correspondence between eigenstates of G (eigenvalues of G) and 
QP states of H ( t )  (quasi-energies of H ( t ) )  is in general not one to one. 
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At this point it is easy to understand why QP states always exist and fulfil (a)-(d) of 
proposition 3 if H ( t )  is strongly continuous in t and X is finite dimensional. In this case 
(Al)  and (A2(a)-(f)) are fulfilled and G is compact and unitarily equivalent to a 
Hermitian matrix in C" for some m E N  (Reed and Simon 1975). Consequently G has 
a pure point spectrum (possibly degenerate), a(G) = aJG) ={A . . . , Am}. 

If the spectral condition in propositions 3 is not satisfied, i.e. the continuous 
spectrum of G is non-empty, a,(G) # 0, then clearly proposition 3(a) does not hold, 
whereas propositions 3(b)-(d) remain valid for each A, E (TJG) without any change. 

As an example we consider a particle of charge -e and mass m in a spherically 
symmetric potential under the influence of an external wave field ( h  = 1). 

We choose 

A mu2 
X = L 2 ( R 3 ) ,  H=--+-/ XI2, dom(H) = dom(A) ndom(lxI2), 

2m 2 

A(t, x) = 2a cos(ox3/c)(cos ut, -sin ut, 0), w < U ,  

e 1 e 2  
mc 1 2mc V(t ,  X) =-A(t ,  X)  T V + y A 2 ( t ,  x), 

mu2 
+ - - - ~ x / ~ = H + V ( ~ ) ,  2 dom[H(t)] = dom(H). 

Then U ( t )  takes on the Floquet form (Salzman 1947b, Mitter and Potz 1981) 
~ ( ~ 1  = eiwtL3 e-itG, 

mc mc 

= H W L 3  + v (o), dom(G) = dom(H), 

where L3 abbreviates the third component of the angular momentum operator. That G 
is self-adjoint and dom(G) = dom(H) follows from (Reed and Simon 1975) 

ll31d 

and from the fact that 

v (0) (H + W L 3  + 2 )-', Z E C - R ,  

is easily seen to be a compact operator in L2(R3). The latter result also implies the 
emptiness of the essential spectrum aess(G) since 

c ~ ~ ~ ( G ) = c ~ ~ ~ ( H  +wL3)= 0. 

Thus the dominance of mu21xI2/2 for 1x1 + 00 forces the spectrum of G to be purely 
discrete, i.e. a ( G )  consists only of isolated eigenvalues of finite multiplicity, and all 
assumptions of proposition 3 are satisfied in this case. These results are essentially 
independent of the special form of the potential mu2/xI2/2 and also hold if is 
replaced by some V ( x )  fulfilling V ( x )  €L:,,(R3), V ( x )  > m ~ ~ 1 ~ 1 ~ / 2 + c ,  c E R .  If the 
potential does not dominate (diverge) for 1x1 -+ 00, then G will in general exhibit a 
continuous part in its spectrum and thus the QP states will lose their completeness 
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property. In this case wL3 is by no means a small perturbation of H, and also stability 
assertions regarding the spectra of N + wL3 and G cannot be obtained by the simple 
methods described above. 
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